Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(12): 8641-8649, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38470826

RESUMEN

Renewable-energy-powered electrosynthesis has the potential to contribute to decarbonizing the production of propylene glycol, a chemical that is used currently in the manufacture of polyesters and antifreeze and has a high carbon intensity. Unfortunately, to date, the electrooxidation of propylene under ambient conditions has suffered from a wide product distribution, leading to a low faradic efficiency toward the desired propylene glycol. We undertook mechanistic investigations and found that the reconstruction of Pd to PdO occurs, followed by hydroxide formation under anodic bias. The formation of this metastable hydroxide layer arrests the progressive dissolution of Pd in a locally acidic environment, increases the activity, and steers the reaction pathway toward propylene glycol. Rh-doped Pd further improves propylene glycol selectivity. Density functional theory (DFT) suggests that the Rh dopant lowers the energy associated with the production of the final intermediate in propylene glycol formation and renders the desorption step spontaneous, a concept consistent with experimental studies. We report a 75% faradic efficiency toward propylene glycol maintained over 100 h of operation.

2.
Nat Commun ; 15(1): 616, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242870

RESUMEN

Electrosynthesis of acetate from CO offers the prospect of a low-carbon-intensity route to this valuable chemical--but only once sufficient selectivity, reaction rate and stability are realized. It is a high priority to achieve the protonation of the relevant intermediates in a controlled fashion, and to achieve this while suppressing the competing hydrogen evolution reaction (HER) and while steering multicarbon (C2+) products to a single valuable product--an example of which is acetate. Here we report interface engineering to achieve solid/liquid/gas triple-phase interface regulation, and we find that it leads to site-selective protonation of intermediates and the preferential stabilization of the ketene intermediates: this, we find, leads to improved selectivity and energy efficiency toward acetate. Once we further tune the catalyst composition and also optimize for interfacial water management, we achieve a cadmium-copper catalyst that shows an acetate Faradaic efficiency (FE) of 75% with ultralow HER (<0.2% H2 FE) at 150 mA cm-2. We develop a high-pressure membrane electrode assembly system to increase CO coverage by controlling gas reactant distribution and achieve 86% acetate FE simultaneous with an acetate full-cell energy efficiency (EE) of 32%, the highest energy efficiency reported in direct acetate electrosynthesis.

3.
Nat Commun ; 14(1): 474, 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36710270

RESUMEN

Electroreduction of carbon dioxide with renewable electricity holds promise for achieving net-zero carbon emissions. Single-site catalysts have been reported to catalyze carbon-carbon (C-C) coupling-the indispensable step for more valuable multi-carbon (C2+) products-but were proven to be transformed in situ to metallic agglomerations under working conditions. Here, we report a stable single-site copper coordination polymer (Cu(OH)BTA) with periodic neighboring coppers and it exhibits 1.5 times increase of C2H4 selectivity compared to its metallic counterpart at 500 mA cm-2. In-situ/operando X-ray absorption, Raman, and infrared spectroscopies reveal that the catalyst remains structurally stable and does not undergo a dynamic transformation during reaction. Electrochemical and kinetic isotope effect analyses together with computational calculations show that neighboring Cu in the polymer provides suitably-distanced dual sites that enable the energetically favorable formation of an *OCCHO intermediate post a rate-determining step of CO hydrogenation. Accommodation of this intermediate imposes little changes of conformational energy to the catalyst structure during the C-C coupling. We stably operate full-device CO2 electrolysis at an industry-relevant current of one ampere for 67 h in a membrane electrode assembly. The coordination polymers provide a perspective on designing molecularly stable, single-site catalysts for electrochemical CO2 conversion.

4.
ChemSusChem ; 15(1): e202102010, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34714607

RESUMEN

Electrochemical CO2 methanation powered by renewable electricity provides a promising approach to utilizing CO2 in the form of a high-energy-density, clean fuel. Cu nanoclusters have been predicted by theoretical calculations to improve methane selectivity. Direct electrochemical reduction of Cu-based metal-organic frameworks (MOFs) results in large-size Cu nanoparticles which favor multi-carbon products. This study concerns an electrochemical oxidation-reduction method to prepare Cu clusters from MOFs. The derived Cu clusters exhibit a faradaic efficiency of 51.2 % for CH4 with a partial current density of >150 mA cm-2 . High-resolution microscopy, in situ X-ray absorption spectroscopy, in situ Raman spectroscopy, and a range of ex situ spectroscopies indicate that the distinctive CH4 selectivity is due to the sub-nanometer size of the derived materials, as well as stabilization of the clusters by residual ligands of the pristine MOF. This work offers a new insight into steering product selectivity of Cu by an electrochemical processing method.

5.
Nano Lett ; 21(20): 8924-8932, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34410722

RESUMEN

CO2 electroreduction powered by renewable electricity represents a promising method to enclose anthropogenic carbon cycle. Current catalysts display high selectivity toward the desired product only over a narrow potential window due primarily to unoptimized intermediate binding. Here, we report a functional ligand modification strategy in which palladium nanoparticles are encapsulated inside metal-organic frameworks with 2,2'-bipyridine organic linkers to tune intermediate binding and thus to sustain a highly selective CO2-to-CO conversion over widened potential window. The catalyst exhibits CO faradaic efficiency in excess of 80% over a potential window from -0.3 to -1.2 V and reaches the maxima of 98.2% at -0.8 V. Mechanistic studies show that the 2,2'-bipyridine on Pd surface reduces the binding strength of both *H and *CO, a too strong binding of which leads to competing formate production and CO poison, respectively, and thus enhances the selectivity and stability of CO product.


Asunto(s)
Dióxido de Carbono , Nanopartículas del Metal , Catálisis , Electricidad , Paladio
6.
Nano Lett ; 21(18): 7789-7795, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34460262

RESUMEN

Surface functionalization with atoms serves as an important strategy to modulate the catalytic activities of low-dimensional nanomaterials. Herein, we developed a facile hydrogen incorporation strategy for improving the catalytic activities of SnS2 nanosheets toward CO2 electroreduction. Compared with SnS2 nanosheets, the hydrogen-incorporated SnS2 (denoted as H-SnS2) nanosheets exhibited high current density and Faradaic efficiency (FE) for formate. At -0.9 V vs RHE, H-SnS2 nanosheets displayed a maximum FE of 93% for carbonaceous product, which rivals the activities of most Sn-based catalysts in CO2 electroreduction. Mechanistic studies disclosed that the incorporation of surface hydrogen induced the electron injection into the structures of H-SnS2 nanosheets, which largely facilitates the process of CO2 activation. Density functional theory (DFT) calculations further revealed that hydrogen incorporation decreased the energy barrier for the formation of HCOO* intermediates, thus contributing to the CO2-to-formate conversion on H-SnS2 nanosheets.

7.
Chem Soc Rev ; 50(17): 9817-9844, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34308950

RESUMEN

In electrocatalysis, doping regulation has been considered as an effective method to modulate the active sites of catalysts, providing a powerful means for creating a large variety of highly efficient catalysts for various reactions. Of particular interest, there has been growing research concerning the doping of two-dimensional transition-metal compounds (TMCs) to optimize their electrocatalytic performance. Despite the previous achievements, mechanistic insights of doping regulation in TMCs for electrocatalysis are still lacking. Herein, we provide a systematic overview of doping regulation in TMCs in terms of background, preparation, impacts on physicochemical properties, and typical applications including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, and N2 reduction reaction. Notably, we bridge the understanding between the doping regulation of catalysts and their catalytic activities via focusing on the physicochemical properties of catalysts from the aspects of vacancy concentrations, phase transformation, surface wettability, electrical conductivity, electronic band structure, local charge distribution, tunable adsorption strength, and multiple adsorption configurations. We also discuss the existing challenges and future perspectives in this promising field.

8.
Nano Lett ; 20(11): 8229-8235, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33054238

RESUMEN

Probing and understanding the intrinsic active sites of electrocatalysts is crucial to unravel the underlying mechanism of CO2 electroreduction and provide a prospective for the rational design of high-performance electrocatalysts. However, their structure-activity relationships are not straightforward because electrocatalysts might reconstruct under realistic working conditions. Herein, we employ in-situ measurements to unveil the intrinsic origin of the InN nanosheets which served as an efficient electrocatalyst for CO2 reduction with a high faradaic efficiency of 95% for carbonaceous product. During the CO2 electroreduction, InN nanosheets reconstructed to form the In-rich surface. Density functional theory calculations revealed that the reconstruction of InN led to the redistribution of surface charge that significantly promoted the adsorption of HCOO* intermediates and thus benefited the formation of formate toward CO2 electroreduction. This work establishes a fundamental understanding on the mechanism associated with self-reconstruction of heterogeneous catalysts toward CO2 electroreduction.

9.
Nano Lett ; 19(9): 6547-6553, 2019 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-31414823

RESUMEN

In CO2 electroreduction, the critical bottleneck lies in the CO2 activation which requires high overpotentials. CO2 activation is related to both the electronic structures of catalysts and those of adsorbates, thus an ideal catalyst should match its electronic structures with those of the adsorbate. Here, we harmonized the electronic structures of the adsorbate and Mn-doped In2S3 nanosheets for efficient CO2 reduction. The introduction of Mn dopants into In2S3 nanosheets enhanced both the Faradaic efficiency (FE) for carbonaceous products and current density (j). At -0.9 V vs RHE, Mn-doped In2S3 nanosheets exhibited a remarkable FE of 92% for carbonaceous product at a high j of 20.1 mA cm-2. Mechanistic studies revealed that Mn doping enabled the harmonic overlaps between the p orbitals of O atoms and d orbitals of Mn atoms near the conduction band edge of Mn-doped In2S3 nanosheets during the activation of CO2. Due to the unique electronic structures of the coadsorbed configurations, Mn-doped In2S3 nanosheets exhibited an energy barrier for CO2 activation into HCOO* lower than that over pristine In2S3 nanosheets.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...